
Cavity dispersion equation AX A0(00/0X)-1:
a note on its origin

F. J. Duarte

A simple derivation of the cavity dispersion equation for high-gain pulsed lasers, AX A/X)-, is
provided by using Dirac's notation for probability amplitudes as applied to the analysis of dispersive
cavities.

Introduction
The cavity dispersion expression AX AO(a0/aX)-' is
widely used to estimate the dispersive linewidth in
high-gain pulsed lasers incorporating dispersive opti-
cal elements.Y- 5 In this equation, AO represents the
beam divergence and (a0OIW) is the total intracavity
dispersion. In practice, this dispersion can be high
in multiple-prism grating arrangements since the
dispersion of the grating is multiplied by the total
beam expansion provided by the multiple-prism array
that can be in the 100-200 range. In this regard,
tunable pulsed laser oscillators utilizing dispersive
optics have been demonstrated to oscillate in a single-
longitudinal mode.68

To physicists working on pulsed lasers, AX
A 0(00/aX)'l is a familiar statement with clear and
direct experimental relevance. Although this expres-
sion can be considered as a purely mathematical
statement, historically it can be identified with devel-
opments in classical optics. For example, a litera-
ture survey indicates that this equation has been
derived in the context of geometrical optics and has
been applied extensively in dispersive spectrome-
ters.9-12 In this regard, it appears that laser physi-
cists have adopted this well-known relation from
geometrical optics.

In this paper we show that AX A0(00/aX)- can
be established by using Dirac's bra-ket formalism' 3 in
the analysis of dispersive cavities. In addition, the
simple approach described here may offer further
elucidation on the contribution of intracavity disper-

The author is with the Imaging Research Laboratories, Eastman
Kodak Company, Rochester, New York 14650-1744.

Received 22 May 1992.
0003-6935/92/336979-04$05.00/0.
© 1992 Optical Society of America.

sion to linewidth narrowing in high-gain dispersive
oscillators.

Background
Consider a dispersive resonator incorporating an
output coupler, a gain medium, a multiple-prism
assembly, and a grating (Fig. 1). The multiple-prism
chain is composed of a number of prisms in additive
configuration, thus providing a significantly high
dispersion and consequently a highly selective fre-
quency transmission function. The overall disper-
sion for orthogonal beam exit is given by5

(00/OX) = M(a0/OX)G

r m
+ 2 ( 1) H k, j tan hlm(anmI/a),

m=1 j=\
(1)

where r is the total number of prisms, (a0 / a X)G is the
grating dispersion, (nm/aX) is typical of the prism
material, and

(2)M = TI kim
m=1

is the total beam magnification, where klm = (cos 11,m/
cos 4in,) is the individual beam-expansion factor.
Here, +1,m is the incident angle at the mth prism, and
4I1,m is the corresponding refractive angle.

In addition to frequency selectivity, the multiple-
prism grating assembly allows only the transmission
of highly p-polarized radiation. The cumulative
transmission losses at the incident surface of the mth
prism are given by

Ll,m = L2,(m1) + [1 - L2 ,(m-l)]Rlm, (3)
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passage, then the probability for the transmission of
monochromatic radiation is given by

I(.IAls) 2 = I(S'kkim'1 2 A( 121m'AI 4S)m) 2I( mIS) 2. (6)

Now, the probability for narrow-linewidth propaga-
tion of the photon flux leaving s toward A is inversely
proportional to its divergence AO so that

I(4fj,mIS)I2 = Kj(1/AO). (7)

Here we should note that AO is always finite, and its
minimum value is its well-known diffraction limit
AOD = X/(iw), where w is the beam waist.15 Values
for AO can be derived classically by using propagation
matrices5 or by using the uncertainty principle.16

Once the photon flux arrives at the dispersive
chain, the return of resonant narrow-linewidth emis-
sion depends on the dispersion

Fig. 1. Schematic of the unfolded dispersive assembly of the
cavity integrated by a multiple-prism expander and grating.
Single-pass radiation exits the gain medium at s and is incident at
an angle Xlm at the prismatic expander. The dispersive assembly
A allows emission within a resonant narrow-bandwidth range to
exit the prisms at the angle ,m'. Radiation that exits at this
angle proceeds to return to the narrow-band amplification beam
axis at the gain medium (s').

I(,~j,m'IAIc-t1,m)I 2
=K200/a). (8)

For highly selective resonant radiation that returns
at m the probability to undergo amplification at s'
is high, thus

I(S Iij,m )12 1. (9)

Since the overall probability for resonant amplifica-
tion is inversely proportional to the wavelength spread
of the emissionwhere

Rl,m = tanb2(.b,, - im)tan2(G,, + hm) (4)

is the usual Fresnel equation for p polarization.' 0

Equations (1)-(4) are provided as background infor-
mation.

Intuitive Approach
Here we describe an intuitive approach to establish-
ing a correspondence between a probabilistic descrip-
tion of intracavity propagation, in a dispersive cavity,
and AX AO(0/aX)-'. The approach applies the
Dirac formalism13 and follows a basic and simple
probabilistic style similar to that outlined by Feyn-
man et al. 14

Let us assume, on a single-pass perspective, that
unpolarized and highly divergent amplified spontane-
ous emission of a broad frequency range leaves the
gain medium s toward the dispersive assembly A (see
Fig. 1). Transmission at the dispersive assembly is
restricted only to radiation incident at the specific
angle ¢1,m that satisfies resonant frequency conditions.
Hence, if s' is the gain axis for narrow-linewidth
oscillation, then the probability amplitude for reso-
nant narrow-linewidth double-pass amplification can
be written as

(s'lAIs) = s (s,' ,m') (i,m 'IAI lj,m)(4imIs). (5)
El'm

Since 4km is a unique angle of incidence on the gain
axis at the multiple-prism expander that is necessary
to induce diffraction at the grating followed by return

I(s'IAIs)12 = K3 (1/AX), (10)

then substitution of Eqs. (7), (8), and (10) and
approximation (9) into Eq. (6) yields

AX = AwO(30/OA)l (11)

for the special case' 7 of K3 K1K2 -
Following consecutive return passes, AO should be

expected to decrease toward its diffraction limit.
This, in turn, allows for a refinement in AX, as is well
known in long-pulse dye lasers.4' 5 Measurements on
the consecutive refinement in the values of 1((,mIS)12
and I(sIIAIs)12 could be used to determine the influence
of multipass dispersive effects on AX. In turn, this
should provide information that is necessary to de-
velop a multipass linewidth theory including the
dynamics of the gain medium.

Derivation by Using the Generalized
Interference Equation
Let us consider the generalized case of a transmission
grating being illuminated by a dispersionless beam
expander as illustrated in Fig. 2. The probability
amplitude for a photon to go from the exit surface of
the beam expander (s) to a total reflector (x) via an
array of N slits (j) can be written as13

N

(XIS) = I (XI j)( is).
j:'1

(12)
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Fig. 2. Expanded beam () illuminates a large number of slits of a
transmission grating (J). The photons then proceed to reach X,
where interference is observed. Here, the beam expander is
assumed to be of a dispersionless design. 5

The probability amplitudes can be expressed in the
form of (j = (rj,)exp(-i(~j) and (its)=
T(r,)exp(-i0j), where T(rj,x) and 4'(r5, ) are appropri-
ate diffraction wave functions.'14 Thus, the general-
ized probability for one-dimensional N-slit interfer-
ence can be written as'18

N N

!(XlS)12 = y(rj)2 + 2 Pr)

I 1P(r,,)cos(f1,, - f)j, (13)

where P(r.) = T(r ,(r,,) and fj = ( + j). This
is a generalized interference equation that has been
successfully applied to predict accurately interference
and/or diffraction phenomena arising from N-slit
gratings.'18 The beauty of this equation is its simplic-
ity and general applicability. In this regard, Eq. (13)
has been shown to be applicable in the near and/or far
field and can also be used to predict transverse mode
structure that is due to intracavity apertures.

For uniform illumination of the grating

(1us) = (21s) =(3js) = ...

= (NlIs) = P(r,)exp(-i0j) = 1,

and the interference equation simplifies to

N N

I~XJS)12 ~ P ,x)2 + 2 E Pr,)

X [m+ (r,x)cosG(m 4,, j (14)

The interference term in Eq. (14) is

cos((~m - )) = cos k-r = cos kILm - Lm,,1,

where ILm - LmiI1 is the exact optical path difference
that can be approximated as' 0

IL, - Lm-1 = dm sin Om,.

For a grating with uniform slit separation the max-
ima is given by kdsin 0= n7r. Using k =(27w)/ Xone
can write the well-known grating equation in Littrow
configuration:

nX = 2d sin 0. (15)

For two wavelengths separated by a small difference
AX sothat 0 1 02 (= 0), we can write

nAX 2dAO{1 - (302 /3!) + (504 /5!) . 1 (1 6)

Differentiating Eq. (15) and substituting the result
into approximation (16) yields

AX A0G90/aX)-'1j - (02/2!) + (04 /4!) .. }(1/cos 0).

(17)

This expression reduces to AX A0G30/aX)-'.
A further avenue to establishing expression Eq.

(11) is to use the time-independent component of the
wave equation I = To exp(ikx). Following differen-
tiation and for a small wavelength difference, AX 
2,rrA(P/x)'1. Then, assuming aGaussian propa-
gation behavior for P and using ApA x h, we can
establish expression (11).

Conclusion
We have established AX A0(a0/aX)-' through the
application of the Dirac formalism to the description
of propagation in dispersive cavities. This was accom-
plished by using a return-pass description of intracav-
ity propagation in a multiple-prism grating cavity and
also by using the generalized interference equation.

Although the approach is by no means rigorous and
contains various practical approximations, it illus-
trates that this widely used expression in the field of
pulsed lasers is compatible with the application of the
Dirac formalism to dispersive cavities. From a prac-
tical perspective, the elements for an iterative mea-
surement and computational approach to determine
the influence of multipass dispersive effects on AX
have been outlined.

The author gratefully acknowledges discussions
with L. W. Hillman, L. M. Narducci, S. K. Salib, and
M. 0. Scully.
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